Cognitive Wireless Networks: Your Network Just Became a Teenager

Marina Petrova, Petri Mähönen, Janne Riihijärvi, Matthias Wellens

25.04.2006 INFOCOM, Barcelona

RWTH Aachen University www.mobnets.rwth-aachen.de Marina.Petrova@mobnets.rwth-aachen.de

Contents

- Motivation
- Towards cognitive wireless networking technologies
- The Cognitive Resource Manager (CRM) architecture
- Tools for "cognition"
- Functions, APIs and enabling technologies
- Summary and the future work

Motivation I

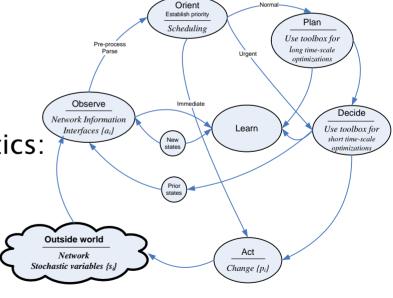
- We witness a constant increase of the number of wireless devices operating in the unlicensed 2.4 GHz band.
- Not only the number but also the diversity of the devices is large.
- Severe competition of the different technologies for the same spectrum.
- Serious interference problems and decrease of the communication performance.

Need for "smart" and self-learning methods to more optimally utilize the spectrum

Motivation II

- Alternative method for cross-layer optimization for more efficient use of available communication capacity in the wireless systems.
- Better matching between the needs of the applications and the available resources in the wireless devices.
- Transparent flow and utilization of information through the protocol stack over well defined interfaces.

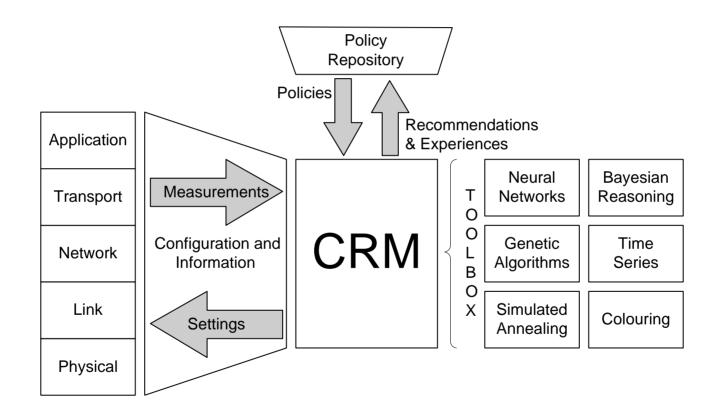
Need for advanced multi-dimensional optimization and reinforced learning


Towards cognitive networking

- More than just a "cognitive radio" concept.
- Extending the scope towards more holistic approach.
- Introducing a framework Cognitive Resource Manager (CRM) for automatic optimization of the communication stack as a whole beyond the traditional RRMs by using machine learning and pattern recognition approaches:
- Optimal management of spectrum resources
 - Scheduling
 - Management of link parameters
 - Scalability and self-organisation
 - Cooperation between the applications and the system
- CRM tries to dynamically learn the environment, find out, for example, the capacity bounds and then optimize system performance to reach the best possible state.

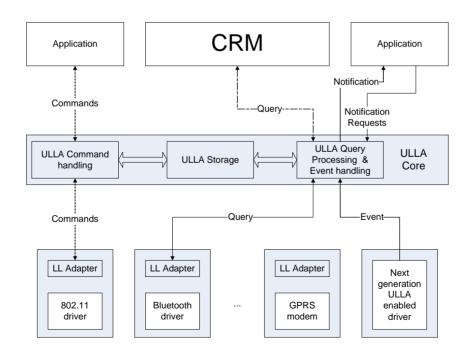
CRM architecture

- A multifunctional software entity
- In the optimization process it uses
 - Toolbox of advanced reasoning methods
 - Bayesian reasoning
 - Genetic algorithms
 - Neural networks
 - Time series analysis
 - ...
 - Variety of information & statistics:
 - Application
 - Network
 - Link layer
 - Operating system
 - Historical data
 - ...



Architectural Challenges

- The dynamic time-scales for different parts of the cross-layer optimization and machine learning are vastly different
 - There can be order of magnitudes differences on characteristic time-scales between Physical and Network layers
 - This includes also need to address scheduling in CRM
- The presentation, semantics and tools of phenomena can differ and need coordination
 - For example describing the policies for spectrum usage (e.g. XG-Policy Language) and radio environment measurements
- Overall handling the complexity in efficient way requires careful and modular architectural design and research for CRM.


CRM is modular

Technology enablers

- Well defined interfaces (APIs) towards the applications and the lower layers in the protocol stack.
- One example is the Universal Link-Layer API being developed by the GOLLUM project (www.ist-gollum.org).

Summary & the Future Work

- The poster discusses early research and directions towards future cognitive networking.
- Focus is put on a multi-dimensional resource optimization in the wireless networks using "cognitive" techniques.
- A high-level architecture of a Cognitive Resource Management framework (CRM) is introduced.
- The introduced work will continue in several directions:
 - Testing & evaluation of the optimization algorithms in the toolbox
 - Development of the required APIs
 - Coping with the large differences in the time-scales for the different processes in the different levels

